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Molecular magnets whose properties are sensitive to the external
stimulus, are recently very attractive for their potential applications
as switches and sensdr$he weak interaction of guest molecules,
coordination geometry distortion, and coordination number change
can effectively modulate the magnetic properties of coordination
polymers? Obviously, modification of the spin exchange topology, _
for example, connecting discrete magnetic clusters into an extended g~
network, is expected to induce more drastic magnetism change.
However, the poor crystallinity of the final product often prevents
the structural determination after solid-state transformations, espe-
cially those involving the breakage/formation of chemical bohds.
So far only limited single crystal-to-single crystal (SCSC) trans-
formations involving the dimensionality changes of coordination Figure 1. Transformation of the OD dimelr (left) to the 2D layer structure

. in 2 (right). (The water molecules ibare highlighted by enlargement; the
polymers were reportedand no such transformation has been black and green arrows represent the removal of an aqua ligand and the

utilized in generating a dynamic magnetic system. Here, we report possiple attacking of an uncoordinated carboxy O atom to ttea@n of
a SCSC transformation from discrete molecules into two- an adjacent dimer, respectively.)

dimensional (2D) layers, concomitant with a drastic change in

magnetic properties. ] ) by a carboxy oxygen atom from a neighboring dimeric unit, thus

Quinoline-8-oxy-acetate (8-qoac), as a multidentate ligand with ¢4ch dimer is now connected to four neighboring ones by the-anti
a carboxylate group, was designed to generate both discrete complex i carboxylate bridges, giving rise to a (4,4) layer by considering
and extended magnetic networks. The 0D dimeric compoungt [CO  gach dimer as a node. The coordination structui2rimy also be
(8-goac)(Ns);(Hz:0)] (1) was synthesized by the reaction of gescribed as antianti carboxylato-bridged Clohelical chains
8-Hgoac, Co(NG),, and NaN in CHzOH/H.0. The single-crystal jnterlinked by the double EO azido bridges. The helicity leads to
structure of1° consists of double end-on (EO) azido-bridged, g different orientations of metal coordination spheres alternating
centrosymmetric Cbdimers (Supporting Information, Figure S1).  glong the helix, which is an important implication for the spin-
The Cd ion is ligated by a tridentate 8-qoac, two azido, and one canting magnetic behavidr.

aqua ligand in a highly distorted octahedrajay geometry (Ce- The crystal structures imply that the transformation frbto 2
N/O, 2.034-2.176 A). In the resulting planar @, ring, the Co- involves changes in the symmetry, lattice parametedgmer
N—Co angle (99.22(9) and the Ce-Co distance (3.226 A) liein  orientations (Figure 1), and molecular stacking fashions (Figure
the typical range for double EO azido-bridged structures. S2). It is also notable that this transformation is the first example

An interesting feature if is that the supramolecular interactions of 3 SCSC transformation from 0D metal complexes to a 2D
may direct a solid-state reaction. Each aqua ligand is hydrogen- coordination polymer, though a OD to 2D solid-state structural
bonded to an uncoordinated carboxy oxygen atom of an adjacentiransformation of an inorganic anion {M;q0.g4~ was previously
dimer [O—H-+-O 2.660(1) A], resulting in a hydrogen-bonded, wavy established by TGA and PXRD techniques.

(4,4) network (Figure 1), which stacks via-x interactions into a Magnetic properties for polycrystallifeand2 were measured.
3D architecture (Figure S2). When the aqua ligands are removed, The ;T value per dimer ofl is 5.97 cnd mol~1 K at 300 K, which

the uncoordinated carboxy oxygen atom may take up the vacantis typical for an octahedral Gaomplex. TheyyT versusT plot of

site of Cd in a neighboring dimer, forming a mixed azido/ 1 at 1000 Oe (Figure 2) increases first upon cooling for an
carboxylato-bridged layer. Thermogravimetric analysis (TGA) of intradimer ferromagnetic coupling (the Weiss cons@nt 14.2
1displays a weight loss of 5.7% from 165 to 19D, corresponding K, fitting from 80 to 300 K), then rapidly decreases to 2 K, owing
to the loss of the aqua ligands (5.6%) (Figure S3). After this weight to weak interdimer antiferromagnetic interaction and/or zero-field
loss, a long plateau is observed until a full decomposition at ca. splitting effects. This behavior is consistent with the other double
270 °C occurs, where a new phase is formed upon removing the EO azido-bridged dimer%. To roughly estimate the magnetic
aqua ligands in the range of ca. 15090 °C, as shown by interaction between Cloions, a spin-only dimeric model of ¢p
temperature-dependent powder X-ray diffraction patterns (PXRD) with J as the intradimer interaction artl as a correction item
(Figure S4). Fortunately, we were able to obtain, though irreversibly, including the interdimer interaction and orbital contribution, is used
the dehydrated single crystals [£8-qoac)(Ns)2], (2) by heating (see ESI). The least-squares fit of the experimental data above 40
the single crystals of at 150°C under vacuum. K of 1leads toJ = 10.4 cnTt, § = —11.3 K,g=2.44,R=2.1

Crystallography study revealed that the dimeric unit 2h x 1075, The positiveJ value shows the strong intradimer ferro-
resembles that of (Co—N/O 2.014-2.197 A, Coe--Co 3.232 A, magnetic coupling, consistent with the typical double EO azido-
Co—N—Co 100.5(19). However, the aqua ligand is now replaced bridged dimers.The negatived accounts for the orbital contribution
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Figure 2. The temperature-dependent susceptibilit{ ¢fed) and2 (blue).
The solid lines are the best fit to the spin-only dimer @eodel for1 and
2. Inset: FC magnetizations at different fields for
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Figure 3. The isothermal magnetization f@rat 2 K. The insets show the
temperature dependence ad susceptibility at various frequencies far
(lower right) and the hysteresis loop farat 2 K (upper left).

of Cd' ion and interdimer antiferromagnetic interaction (see ESI).
The ferromagnetic interaction is also confirmed by the isothermal
magnetization at 2 K, which increases rapidly and saturates with
the field up to 7 T. Moreover, neither peak of long-range magnetic
ordering inac susceptibility data nor hysteresis loop is observed
for 1 (Figures S5 and S6).

The magnetic behaviors @fare distinctly different from those
of 1 owing to the presence of the antiferromagnetic -aatiti
carboxylate bridges. ThayT of 2 is almost invariable down to 60
K (with ® = 2.9 K), and then slowly decreases to a minimum at
ca. 25 K (Figure 2). This behavior should be attributed to the
competition of the spirrorbit coupling, intradimer ferromagnetic,
and interdimer antiferromagnetic interactions of'CBelow 25 K,
theymT value rises abruptly to a sharp maximum at ca. 11 K, and
finally drops rapidly © 2 K for the interlayer antiferromagnetic
interaction and/or zero-field splitting effects. The sharp increase
of ymT value suggests that the local spins adopt a spin-canting
configuration being consistent with the structure2ofAlthough
the double EO azido-bridged dimer is centrosymmetric, there is
no inversion center within the antanti carboxylato-bridged Clo
helical chain. Thus, spin canting can occur throughout the chain.
As expected for a weak ferromagnet due to spin canting, the
magnetic behavior d is markedly field-dependent (Figure 2 inset).
To compare the magnetic interactions roughly yet directly with those
in 1, the experimental data @above 40 K are fitted by the same
model forl, leading toJ = 13.8 cntt, # = —27.0K,g=2.41,R
= 3.1 x 1078 TheJvalue is comparative with that df while the
much larger{f| than that oflL may be attributed to the presence of
anti—anti carboxylate bridges, which significantly enhance the
interdimer antiferromagnetic interaction f

To further characterize the weak ferromagnetism2inthe

for the interlayer antiferromagnetic interaction (Figure 3), and then
increases abruptly at 750 Oe for the intradimer ferromagnetic
interactions. Upon a further increase of the field, the magnetization
increases much more slowly as the ferromagnetic phase tends to
saturate. Finally, the magnetization increases linearly for the higher
fields, which is a feature of spin-canting antiferromagnet. Whe
value & 7 T is 2.57 N3, which is far below that expected for a
total alignment of spinsM ~ 6 Np) for the canting antiferromag-
netic interactions ir2. A hysteresis loop of is observed at 2 K
with a remnant magnetization 1.Q5Nand a coercive field of 1980

Oe per dimer (Figure 3 inset). The obvious frequency-dependent
behavior was observed in tlze susceptibility data from 11 to 15

K (Figure 3 inset). The shift of peak temperatuiig)(of " was
measured by a parametgr= AT,/[T,A(log f)] = 0.01, being in

the range of spin glass. This behavior confirms the presence of the
long-range order ir2. The critical temperature 13 K of the phase
change is attested by ZFC and FC curves (Figure S7).

In summary, a unique SCSC transformation from 0D discrete
molecules to a 2D coordination polymer has been established, which
is accompanied by the drastic magnetic property change from short-
range coupling to long-range spin-canting antiferromagnetic order-
ing.
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isothermal magnetization and the hysteresis loop were measured

at 2 K. The magnetization first increases slowly in the low field
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